Minimum energy consumption in isolated and interacting magnetic nanoswitches

M. Madami, G. Gubbiotti, S. Tacchi and G. Carlotti

NIPS Summer School 2014

GHOST research group

- Prof. Giovanni Carlotti, Dipartimento di Fisica, Università di Perugia
- Dr. Gianluca Gubbiotti, Istituto Officina dei Materiali - CNR
- Dr. Silvia Tacchi, Istituto Officina dei Materiali - CNR

Current Research Projects:
"LANDAUER" - European Community (FP7/2007-2013)
(LADDADER
"DyNanoMag" - PRIN Project, Ministero Italiano dell’Universotà e della Ricerca (MIUR)

Motivation

Energy dissipation during information processing is an hot topic in current (ICT) research field.

- The complementary metal-oxide semiconductor technology (CMOS) is facing fundamental challenges as increased power dissipation and rapidly approaching the limits of scaling
- The research in the field of data storage is driven by the need of: bit size reduction as well as fast, reliable, energy efficient switching mechanisms

Landauer principle

The logical operation to restore to " 1 " a single bit (Landauer erasure) requires a minimum generation of heat of $\boldsymbol{k}_{\boldsymbol{B}} \mathbf{T} \cdot \ln (\mathbf{2})<-$ Landauer limit

```
R. Landauer, IBM J. Res. Dev. 5, 183 (1961).
```

Landauer principle: All logically irreversible operations require a generation of heat of $\boldsymbol{k}_{\boldsymbol{B}} \boldsymbol{T} \cdot \ln (\mathbf{2})$ energy per bit of information lost.
C. H. Bennett, International Journal of Theoretical Physics 21, 905-940 (1982).

Nanomagnetic switches

- Bistable nanomagnetic switches (i.e. magnetic systems of nanometric dimensions and two degenerate minimum energy configurations) can be used, in principle, to both:
a) encode information (two degenerate energy minima: " 0 " and " 1 ")
b) process information: nanomagnetic logic devices (NML) such as the magnetic quantum cellular automata (MQCA)

- Nanometer scale devices, non-volatile, low-power

Outline

- Introduction to the micromagnetic approach
- Landauer erasure of nano-magnetic bits
- Reversible (adiabatic) switching of nano-magnetic bits
- Results of recent measurements on Landauer erasure of nano-magnetic bits

Micromagnetic approach

Each cell contains a single spin:

1) constant modulus (\mathbf{M}_{s}) and position
2) its orientation in 3 dimensions may vary

Typical dimensions of the elementary cells: 1-5 nm

(1)(1)(1)BB

Magnetization dynamics at $\mathbf{T = 0} \mathrm{K}$

Landau-Lifshitz-Gilbert equation

No fluctuations field - no thermal fluctuations

Magnetization dynamics at $\mathbf{T > 0} \mathbf{K}$

Landau-Llifshitz-Gilbert equation including a random field

$$
\begin{aligned}
& \frac{d \mathbf{M}_{i}}{d t}=-\gamma \cdot\left[\mathbf{M}_{i} \times\left(\mathbf{H}_{i}^{\mathrm{eff}}+\mathbf{H}_{i}^{\mathrm{fl}}\right)\right]-\gamma \cdot \frac{\lambda}{M_{\mathrm{S}}} \cdot\left[\mathbf{M}_{i} \times\left[\mathbf{M}_{i} \times\left(\mathbf{H}_{i}^{\mathrm{eff}}+\mathbf{H}_{i}^{\mathrm{fl}}\right)\right]\right] \\
& \text { deterministic effective field } \\
& \begin{array}{l}
\quad \mathbf{H}^{\mathrm{II}} \text { - random (fluctuation) field } \\
\left\langle H_{\xi, i}^{\mathrm{fl}}\right\rangle=0, \quad D=\lambda \cdot \frac{k T}{\gamma M_{\mathrm{s}} V} \quad(\xi, \eta=x, y, z) \\
\left\langle H_{\xi, i}^{\mathrm{fl}}(t) \cdot H_{\eta, j}^{\mathrm{fl}}(0)\right\rangle=D \cdot \delta(t) \cdot \delta_{i j} \cdot \delta_{\xi \eta}
\end{array}
\end{aligned}
$$

- Introduction to the micromagnetic approach
- Landauer erasure of nano-magnetic bits
- Reversible (adiabatic) switching of nano-magnetic bits
- Results of recent measurements on Landauer erasure of nano-magnetic bits

A nano-magnetic bistable system (magnetic bit)

$\underline{N i}_{\underline{80}} \underline{\mathrm{Fe}_{20} \underline{e}} \underline{\text { elliptical or rectangular dots: }}$
major axis (a): 300-50 nm
minor axis (b): 120-30 nm
in-plane aspect ratio (a/b): 5.0-1.7
thickness (t): $\mathbf{5 n m}$
cell size: $5 \times 5 \times 5 \mathrm{~nm}^{3}$

The dot shape defines an in-plane uniaxial anisotropy with the easy axis along the ellipse major axis

The energy landscape, with $\mathrm{H}_{\mathrm{ext}}=0$, is effectively described by a symmetric bistable potential

Energy profile for a magnetic bit

Let us consider a magnetic bit with volume (V), magnetization ($\mathbf{M}_{\mathbf{s}}$) and a uniaxial anisotropy (K_{1}) - e.g. a shape anisotropy, in single-spin approximation.

$$
E(\theta)=V\left(K_{1} \cos ^{2}(\theta)-M_{S}\left(H_{x} \cos (\theta)+H_{z} \sin (\theta)\right)\right)
$$

if the external field is zero it reduces to:

$$
E(\theta)=V\left(K_{1} \cos ^{2}(\theta)\right)
$$

Switching vs. Erasure

Switch (adiabatic): is a logical reversible process which brings the system from an initial known state to a final (opposite) known state

Erasure: is a logical irreversible process which brings the system from an initial unknown state to a final known state

$$
E_{\min }=k_{B} T \cdot \ln (2)
$$

Dissipated energy in the erasure process

$$
E=\int \vec{H} \cdot d \vec{M}=\left(\int H_{X} \cdot d M_{X}+\int H_{Z} \cdot d M_{Z}\right) \quad \vec{M}=\sum_{i} \vec{m}_{i}
$$

$$
\sum_{x}^{\infty}
$$

The dissipated energy \boldsymbol{E} depends on the values of both $\boldsymbol{\alpha}$ (damping) and ΔT (total simulation time). How do you choose them?

LAD(A)(1)B

Dissipated energy at $\mathrm{T}=0 \mathrm{~K}$

$\mathrm{Ni}_{80} \mathrm{Fe}_{20}$ elliptical nanodot
The dots are discretized into cells of $5 \times 5 \times 5 \mathrm{~nm}^{3}$
$\mathrm{K}_{1}=0 \mathrm{erg} / \mathrm{cm}^{3}$, shape anisotropy only

Dissipated energy scales almost linearly with volume (V), damping $(\boldsymbol{\alpha})$ and simulation time $(\mathbf{T})^{-1}$

Volume and shape

Small dots ($100 \times 60 \times 5 \mathrm{~nm}^{3}$)

A

(A)DAOBR

Large dots ($200 \times 120 \times 10 \mathrm{~nm}^{3}$)

In-plane aspect ratio (ellipticity, e)

$e>1.05$ is enough to make the dot stable on times larger than the total simulation time (\mathbf{T})

Statistical distribution of the dissipated energy

dissipated energy $\left(10^{-23} \mathrm{~J}\right)$
$100 \times 60 \times 5 \mathrm{~nm}^{3}$

dissipated energy $\left(10^{-23} \mathrm{~J}\right)$
$300 \times 60 \times 5 \mathrm{~nm}^{3}$

The width ($\sigma_{\text {Dist }}$) of the statistical distribution (100 simulation runs each) increases with temperature (\mathbf{T}) and volume (V)

COODAOBB

Statistical distribution of the dissipated energy

The mean value is always consistent with the adjusted Landauer limit. Nonetheless the width increases of about $\mathbf{4 0 0 \%}$ from the smallest to the largest dot.

It's better to perform experiment on small dots!!

DOADOOBC

Interacting dots - (couples)
$\mathrm{Ni}_{80} \mathrm{Fe}_{20}$ elliptical nanodot, dimensions: $50 \times 30 \times 5 \mathrm{~nm}^{3}$ edge-edge spacing (s): $200-10 \mathrm{~nm}$
Two possible configurations: side-by-side, head-to-tail

Interacting dots - (couples)

- at large separation distances the dots behave like isolated dots
- on reducing the separation distance (s) the head-to-tail couples behave like a single dot
- on reducing the separation distance (s) the energy dissipated by the side-by-side couples seems to diverge

Interacting dots - (arrays)

- Introduction to the micromagnetic approach
- Landauer erasure of nano-magnetic bits
- Reversible (adiabatic) switching of nano-magnetic bits
- Results of recent measurements on Landauer erasure of nano-magnetic bits

(1)⑴ (1)BR

Switching procedure

$$
E=\int \vec{H} \cdot d \vec{M}=\left(\int H_{X} \cdot d M_{X}+\int H_{Z} \cdot d M_{Z}\right)
$$

Dissipated energy it depends on the total simulation time (T)

Zero-power switching

Micromagnetic simulations performed at $\mathrm{T}=300 \mathrm{~K}$

Numerical solution of the Langevin equation:

$$
m \ddot{x}=-\frac{d U(x)}{d x}-\gamma \dot{x}+\xi(t)+f(x, t)
$$

L. Gammaitoni, D. Chiuchiù, M. Madami and G. Carlotti, arXiv:1403.1800 [cond-mat.mes-hall], (2014).

Required conditions to perform a zero-power switching:

1) The particle average position is always close to the minimum of the potential well (zero total force)
2) The switch procedure has to performed as slow as possible (zero friction)
3) The system entropy has to remain constant during the procedure (zero entropic cost)

Switching and bit-flip events

- to switch a flipped bit requires an energy toll to be paid (while normal switching can be done for free)
- energy dissipation for switching a flipped bit depends on the energy barrier height
- its minimum value is $\mathbf{2} \mathbf{k}_{\mathrm{B}} \operatorname{Tln}(\mathbf{2})$
- Introduction to the micromagnetic approach
- Landauer erasure of nano-magnetic bits
- Reversible (adiabatic) switching of nano-magnetic bits
- Results of recent measurements on Landauer erasure of nano-magnetic bits

(1) (1) (1) CBB

Landauer erasure - samples

Samples: arrays of $\mathrm{Ni}_{80} \mathrm{Fe}_{20}$ elliptical elements of different size prepared by conventional e-beam lithography and lift-off at Wurzburg University, Germany (F. Hartmann et al.)

Landauer erasure - MOKE setup

Measurements: performed with a conventional Magneto-Optical Kerr Effect (MOKE) setup by Leonardo Martini and Matteo Pancaldi at: Nanoscience Cooperative Research Center (NANOGUNE), San Sebastian, Spain (Prof. Paolo Vavassori)

Longitudinal configuration: the detected signal is proportional to the component of the magnetization in the reflection plane.

(LADAUER

Landauer erasure - results

Sample B2 ($406 \times 284 \times 10 \mathrm{~nm}^{3}$)

Sample A1 $\left(946 \times 562 \times 10 \mathrm{~nm}^{3}\right)$

The difference between the areas of the hard and easy loops is multiplied by the value of $\mathbf{M}_{\mathbf{s}}$ (800 Gauss), and the volume (V) of the magnetic dot in order to obtain the energy dissipated in the erasure process.

Landauer erasure - results

sample	measurements $\left(k_{B} \operatorname{Tn}(2), T=300 \mathrm{k}\right)$	simulations $\left(\mathrm{k}_{\mathrm{B}} \mathrm{T} \ln (2), \mathrm{T}=300 \mathrm{k}\right)$
C3 $\left(118 \times 84 \times 10 \mathrm{~nm}^{3}\right)$	30 ± 30	1.2 ± 0.1
C2 $\left(181 \times 117 \times 10 \mathrm{~nm}^{3}\right)$	250 ± 100	1.3 ± 0.2
B2 $\left(406 \times 284 \times 10 \mathrm{~nm}^{3}\right)$	2000 ± 1000	14 ± 2
A1 $\left(946 \times 562 \times 10 \mathrm{~nm}^{3}\right)$	10000 ± 2000	190 ± 10

